

NASA Clinical Objectives for Long Duration Space Flight

Rich Williams, MD, FACS
Director, Office of Health Affairs
National Aeronautics and Space Administration

NASA Mission Success

Protection Human Training Selection Design Performance system Function External Environment

Designers must facilitate Human performance...

...by creating a System that responds effectively...

..to the challenges of the space flight Environment.

High Risk/ Extreme Environment

- Ground health emergencies may occur in flight
- Lack of secondary and tertiary care
- Space flight risks
 - √ Adaptation to microgravity
 - √ Psychosocial issues
 - √ Decompression sickness
 - √ Spacecraft decompression
 - √ Fire
 - Temperature extremes, radiation, toxicology
 - √ In flight medical problems

- Long duration flight
 - √ Career hazards
 - √ Chronic diseases
- Health risks on return to Earth
 - √ Emergency egress liability
 - √ Re-adaptation to terrestrial environment/rehabilitation

Physiological Response to Spaceflight

Adaptive

Pathological

Neurosensory & Neuromotor

Cardiovascular/ Pulmonary

Endocrine

Musculoskeletal

parallels with aging...

NASA Space Medical Operations

- No U.S. space mission shortened or aborted due to medical problems
 - √ Reflects excellent preventive care/
 astronaut selection
- Several Russian missions compromised by medical incidents
- NASA has developed limited diagnostic and therapeutic capability for use in space
 - √ Medical kit
 - √ Crew medical officer training, flight surgeon training
 - √ Defibrillator-advanced life support
 - √ Telemedicine
- Inadequate countermeasures capability

In Flight Medical Events STS-1 through STS-89

- 498 of 508 crewmembers reported medical event or symptom (excludes space motion sickness)
- 1777 separate events reported
- ▶ 1538 by men, 239 by women
- 77 events due to injury, including 7 fatalities

NASA Health Criteria

- Maintain health and well-being before, during, and after mission
- Ensure rapid readaptation to gravitational forces

NASA Medical Care Criteria

Ability to treat crew members and return them to duty

Minimize impact on remainder of crew

- Provide for stabilization and evacuation (in LEO)
- Provide for crew safety
- Provide for remote consultation
- Provide autonomous care

Communications Challenge: Time and Space

Health Care Beyond LEO

Autonomous care
Virtual physician
Self-repairing, self-adapting systems

Nanotechnology biotechnology Prevention, Selection **Information** technology

Stabilize and Evacuate

Increasing distance from Earth

Future of Health Care in the U.S. Space Program

From telecare to autonomy...

- Adaptive automation
- Multipurpose tactile interface
- Biosensors for environmental and physiologic monitoring
- Genetic profiling
- Genetic diagnosis
- Genetic vaccines
- Tissue engineering
- Hair cell sensors

- Biologically-inspired robots
- Biotech based immunotherapy
- Functionally-adaptive biomimetics
- Nanomachines (self assembly)
 - √ Cell herding, genetic surgery
- Biologically based nanocomputers
 - √ Artificial intelligence
- Smart/haptic systems
- Virtual physician

Biomotors

